Chaotic maps based on binary particle swarm optimization for feature selection

نویسندگان

  • Li-Yeh Chuang
  • Cheng-Hong Yang
  • Jung-Chike Li
چکیده

Feature selection is a useful pre-processing technique for solving classification problems. The challenge of solving the feature selection problem lies in applying evolutionary algorithms capable of handling the huge number of features typically involved. Generally, given classification data may contain useless, redundant or misleading features. To increase classification accuracy, the primary objective is to remove irrelevant features in the feature space and to correctly identify relevant features. Binary particle swarm optimization (BPSO) has been applied successfully to solving feature selection problems. In this paper, eywords:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic Binary Particle Swarm Optimization for Feature Selection using Logistic Map

Feature selection is a useful technique for increasing classification accuracy. The primary objective is to remove irrelevant features in the feature space and identify relevant features. Binary particle swarm optimization (BPSO) has been applied successfully in solving feature selection problem. In this paper, chaotic binary particle swarm optimization (CBPSO) with logistic map for determining...

متن کامل

Chaotic Particle Swarm Optimization with Mutation for Classification

In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation ...

متن کامل

Feature Selection Method with Proportionate Fitness Based Binary Particle Swarm Optimization

Particle swarm optimization(PSO) has been applied on feature selection with many improved results. Traditional PSO methods have some drawbacks when dealing with binary space, which may have negative effects on the selection result. In this paper, an algorithm based on fitness proportionate selection binary particle swarm optimization(FPSBPSO) will be discussed in detail aiming to overcome the p...

متن کامل

A particle swarm optimization method for periodic vehicle routing problem with pickup and delivery in transportation

In this article, multiple-product PVRP with pickup and delivery that is used widely in goods distribution or other service companies, especially by railways, was introduced. A mathematical formulation was provided for this problem. Each product had a set of vehicles which could carry the product and pickup and delivery could simultaneously occur. To solve the problem, two meta-heuristic methods...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011